Lemma 2. The employer offers contracts comprising task success wages w_i and project success bonus P:¹

$$C_i^m(s_i, s_j) = s_i w_i + m s_i s_j P,$$
 with $w_i = \frac{c}{\beta - \gamma}$

(i) When work is in person, w_i satisfies the incentive constraint $(\beta - \gamma)$ $w_i = c$, whereby both agents exert effort. Since knowledge sharing is frictionless, an agent would always share new knowledge, and no project bonus is required (P = 0). The employer's expected profit is:

$$\Pi_{ip}^{unobs} = \left[(1 - \rho)\beta^2 + \rho\alpha^2 \right] R - 2\left[(1 - \rho)\beta + \rho\alpha \right] \frac{c}{\beta - \gamma}.$$

(ii) When work is remote, the same wages as in (i) induce effort, but inducing knowledge sharing requires a project bonus satisfying $P \ge \frac{c_r}{\alpha(\alpha-\beta)}$. The employer's expected profit is:

$$\Pi_{rm}^{unobs} = \Pi_{ip}^{unobs} - 2[(1-\rho)\beta^2 + \rho\alpha^2] \frac{c_r}{\alpha(\alpha-\beta)} + K + \Delta$$

¹ Here, *P* denotes the project success bonus, awarded to both agents upon successful completion of both tasks.